Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations

نویسندگان

  • Yhasmin Mendes de Moura
  • Lênio Soares Galvão
  • Thomas Hilker
  • Jin Wu
  • Scott Saleska
  • Cibele Hummel do Amaral
  • Bruce Walker Nelson
  • Aline Pontes Lopes
  • Kenia K. Wiedeman
  • Neill Prohaska
  • Raimundo Cosme de Oliveira
  • Carolyne Bueno Machado
  • Luiz E.O.C. Aragão
چکیده

The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this study, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, three vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index.We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum,Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera datawere affected by view-illumination effects, which reduced the SMA shade fraction over time.WhenMODIS datawere corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3–5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. While the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing. 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved. Y.M. de Moura et al. / ISPRS Journal of Photogrammetry and Remote Sensing 131 (2017) 52–64 53

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonal carbon dynamics and water fluxes in an Amazon rainforest

Satellite-based observations indicate that seasonal patterns in canopy greenness and productivity in the Amazon are negatively correlated with precipitation, with increased greenness occurring during the dry months. Flux tower measurements indicate that the canopy greening that occurs during the dry season is associated with increases in net ecosystem productivity (NEP) and evapotranspiration (...

متن کامل

Amazon rainforests green-up with sunlight in dry season

[1] Metabolism and phenology of Amazon rainforests significantly influence global dynamics of climate, carbon and water, but remain poorly understood. We analyzed Amazon vegetation phenology at multiple scales with Moderate Resolution Imaging Spectroradiometer (MODIS) satellite measurements from 2000 to 2005. MODIS Enhanced Vegetation Index (EVI, an index of canopy photosynthetic capacity) incr...

متن کامل

Seasonal landscape and spectral vegetation index dynamics in the Brazilian Cerrado: An analysis within the Large-Scale Biosphere–Atmosphere Experiment in Amazônia (LBA)

The Brazilian Cerrado biome comprises a vertically structured mosaic of grassland, shrubland, and woodland physiognomies with distinct phenology patterns. In this study, we investigated the utility of spectral vegetation indices in differentiating these physiognomies and in monitoring their seasonal dynamics. We obtained high spectral resolution reflectances, during the 2000 wet and dry seasons...

متن کامل

Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images

Leaf phenology of tropical evergreen forests affects carbon and water fluxes. In an earlier study of a seasonally moist evergreen tropical forest site in the Amazon basin, time series data of Enhanced Vegetation Index (EVI) from the VEGETATION and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors showed an unexpected seasonal pattern, with higher EVI in the late dry season than in t...

متن کامل

Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability

Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO2) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically available radiation influence these processes, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017